Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Bone Jt Surg ; 11(10): 658-661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37873524

RESUMO

An obese 57-year-old woman with known hypertension and diabetes mellitus sustained multiple injuries during an accident, which caused anterior-posterior fracture-dislocation of the pelvic ring. Due to the drawbacks of conventional stabilizing methods for anterior-posterior fracture-dislocations of the hip in this setting, such as the inability to visualize anatomical landmarks fluoroscopically for the iliosacral screw technique and the compromised L5 pedicle preventing lumbopelvic fixation, the patient underwent an innovative Hula Hoop technique described here. Using the Hula Hoop technique, a technique that has rarely been studied in humans, we avoided an invasive open procedure, decreased anesthesia time, reduced the size and number of incisions, and minimized bleeding. After three months of routine physiotherapy and occupational therapy, the patient was able to walk with a walker and an ankle-foot orthosis.

2.
Inorg Chem ; 62(39): 15912-15926, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37715709

RESUMO

Six new Cu(I) complexes containing pincer ligands of the type 2,6-bis(3-alkyl/arylimidazol-2-ylidene) methylpyridine I(R/R'Ar) CN̂C, where R = trifluoroethyl (TFE) and R' = 4-CF3, 4-NO2, 4-CN, 4-H, and 4-CH3, have been synthesized. These complexes, namely, [Cu(I(TFE)CN̂C)]PF6, 1-TFE; [Cu(ICF3Ar CN̂C]PF6, 2-CF3; [Cu(INO2Ar CN̂C)]PF6, 3-NO2; [Cu(ICNAr CN̂C]PF6, 4-CN; [Cu(IHAr CN̂C)]2(PF6)2, 5-H; and [Cu(ICH3Ar CN̂C)]2(PF6)2, 6-CH3, were fully characterized by 1H, 13C, and HMBC NMR spectroscopy, elemental analysis, electrochemical studies, and single-crystal X-ray crystallography. The crystallographic data revealed different structures and copper nuclearities for the complexes bearing aryl wingtips with electron-withdrawing (2-CF3, 3-NO2, and 4-CN) and electron-donating (5-H and 6-CH3) substituents. The solution-phase conductivity measurements in acetonitrile revealed a mix-electrolyte behavior for these complexes, supporting the presence of both mono- and binuclear forms of each complex. The fast monomer-dimer equilibrium of the Cu-CNC complexes at room temperature is reflected in their simple 1H NMR spectra in acetonitrile. However, both mono- and binuclear forms were identifiable in 1H diffusion-ordered spectroscopy (DOSY) at low temperatures. The dynamic behavior of these complexes in solution was further examined by variable-temperature 1H NMR (VT 1H NMR) experiments, and the relevant thermodynamic parameters were determined. The process was also probed by one-dimensional rotating-frame Overhauser enhancement spectroscopy (1D ROESY) experiments to elucidate the coexisting species in solution. The 2,6-dimethylpyridyl-linked Cu-CNC complexes also presented a quasi-reversible Cu(II)/Cu(I) couple in cyclic voltammetry studies, wherein a clear influence of the aryl wingtips on the E1/2 values was observed. Furthermore, the percent buried volumes (% Vbur) of the complexes were calculated, showing a similar steric hindrance around copper in all complexes. These findings support the importance of electronic effects, induced by the aryl wingtips, on the preferred coordination geometry, copper nuclearity, and redox properties of the Cu-CNC complexes.

3.
Materials (Basel) ; 16(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902995

RESUMO

Given that a significant fraction of buildings and architectural heritage in Europe's historical centers are masonry structures, the selection of proper diagnosis, technological surveys, non-destructive testing, and interpretations of crack and decay patterns is paramount for a risk assessment of possible damage. Identifying the possible crack patterns, discontinuities, and associated brittle failure mechanisms within unreinforced masonry under seismic and gravity actions allows for reliable retrofitting interventions. Traditional and modern materials and strengthening techniques create a wide range of compatible, removable, and sustainable conservation strategies. Steel/timber tie-rods are mainly used to support the horizontal thrust of arches, vaults, and roofs and are particularly suitable for better connecting structural elements, e.g., masonry walls and floors. Composite reinforcing systems using carbon, glass fibers, and thin mortar layers can improve tensile resistance, ultimate strength, and displacement capacity to avoid brittle shear failures. This study overviews masonry structural diagnostics and compares traditional and advanced strengthening techniques of masonry walls, arches, vaults, and columns. Several research results in automatic surface crack detection for unreinforced masonry (URM) walls are presented considering crack detection based on machine learning and deep learning algorithms. In addition, the kinematic and static principles of Limit Analysis within the rigid no-tension model framework are presented. The manuscript sets a practical perspective, providing an inclusive list of papers describing the essential latest research in this field; thus, this paper is useful for researchers and practitioners in masonry structures.

4.
Inorg Chem ; 60(18): 13821-13832, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34291939

RESUMO

Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Ligantes , Estrutura Molecular
5.
Dalton Trans ; 49(14): 4266-4276, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141456

RESUMO

DNA base repair mechanisms of alkylated DNA bases is an important reaction in chemical biology and particularly in the human body. It is typically catalyzed by an α-ketoglutarate-dependent nonheme iron dioxygenase named the AlkB repair enzyme. In this work we report a detailed computational study into the structure and reactivity of AlkB repair enzymes with alkylated DNA bases. In particular, we investigate the aliphatic hydroxylation and C[double bond, length as m-dash]C epoxidation mechanisms of alkylated DNA bases by a high-valent iron(iv)-oxo intermediate. Our computational studies use quantum mechanics/molecular mechanics methods on full enzymatic structures as well as cluster models on active site systems. The work shows that the iron(iv)-oxo species is rapidly formed after dioxygen binding to an iron(ii) center and passes a bicyclic ring structure as intermediate. Subsequent cluster models explore the mechanism of substrate hydroxylation and epoxidation of alkylated DNA bases. The work shows low energy barriers for substrate activation and consequently energetically feasible pathways are predicted. Overall, the work shows that a high-valent iron(iv)-oxo species can efficiently dealkylate alkylated DNA bases and return them into their original form.


Assuntos
DNA/química , Dioxigenases/química , Ferroproteínas não Heme/química , Teoria Quântica , Sítios de Ligação , DNA/metabolismo , Reparo do DNA , Dioxigenases/metabolismo , Hidroxilação , Modelos Moleculares , Estrutura Molecular , Ferroproteínas não Heme/metabolismo , Oxigênio/química , Oxigênio/metabolismo
6.
Org Biomol Chem ; 17(7): 2028, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30334049

RESUMO

Correction for 'An elusive thermal [2 + 2] cycloaddition driven by visible light photocatalysis: tapping into strain to access C2-symmetric tricyclic rings' by Kamaljeet Singh et al., Org. Biomol. Chem., 2018, DOI: 10.1039/c8ob01273c.

7.
RSC Adv ; 9(39): 22417-22427, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519490

RESUMO

A series of heteroleptic three-coordinate Cu(i) complexes bearing monodentate N-heterocyclic carbene (NHC) ligands of the type 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr), and bidentate N-donor ligands of the type unsymmetrically-substituted dimethyl dipyridylamine (Me2Hdpa) and bis(mesityl)biazanaphthenequinone (mesBIAN) have been synthesized. The complexes [Cu(IPr)(3,4'-Me2Hdpa)]PF6, 1; [Cu(IPr)(3,5'-Me2Hdpa)]PF6, 2; [Cu(IPr)(3,6'-Me2Hdpa)]PF6, 3; [Cu(IPr)(mesBIAN)]PF6, 6; [Cu(SIPr)(3,4'-Me2Hdpa)]PF6, 7; [Cu(SIPr)(3,5'-Me2Hdpa)]PF6, 8; and [Cu(SIPr)(3,3'-Me2Hdpa)]PF6, 11 have been characterized by 1H and 13C NMR spectroscopies, elemental analysis, cyclic voltammetry, and photophysical studies in solid and solution phase. Single crystal X-ray structures were obtained for all complexes except 11. The crystallographic data reveal a mononuclear structure for all complexes with the copper atom ligated by one C and two N atoms. The UV-Vis absorption spectra of all dipyridylamine complexes in CH2Cl2 show a strong ligand-centered absorption band around 250 nm and a strong metal-to-ligand charge transfer (MLCT) band around 300 nm. When irradiated with UV light, the complexes exhibit strong emission maxima at 453-482 nm with photoluminescence quantum yields (PLQY) ranging from 0.21 to 0.87 in solid state. While the PLQY values are comparable to those of the symmetrical [Cu(IPr)(Me2Hdpa)]PF6 complexes, a stabilizing CH-π interaction has been reduced in the current systems. In particular, complex 3 lacks any strong CH-π interaction, but emits more efficiently than 1 and 2 wherein the interactions exist. Structural data analysis was performed to clarify the role of ligands' plane angle and the NH/CH⋯F interactions to the observed light interaction of unsymmetrical [Cu(NHC)(Me2Hdpa)]PF6 complexes. DFT calculations were performed to assist in the assignment of the electronic structure and excited state behavior of the complexes.

8.
Org Biomol Chem ; 17(7): 1854-1861, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29955745

RESUMO

A mild and operationally simple methodology is reported for the synthesis of cyclobutane rings imbedded within a C2-symmetric tricyclic framework. The method uses visible light and an iridium-based photocatalyst to drive the oft-stated "forbidden" thermal [2 + 2] cycloaddition of cycloheptenes and analogs. Importantly, it generates cyclobutane with four new stereocenters with excellent stereoselectivity, and perfect regioselectivity. The reaction is propelled forward when the photocatalyst absorbs a visible light photon, which transfers this energy to the cycloheptene. Key to success is, upon excitation to the triplet via sensitization from the photocatalyst, the double bond isomerizes to give the transient, highly strained, trans-cycloheptene. The trans-cycloheptene undergoes a strain relieving thermal, intermolecular [π2s + π2a] cycloaddition with another cis-cycloheptene. X-ray analysis reveals that the major product is the head-to-head, C2-symmetric all trans-cyclobutane. Additionally, a dramatic display structural complexity enhancement is observed with the use of chiral cycloheptenols possessing one stereocenter, which results in the formation of cyclobutanes with six contiguous stereocenters with good to excellent diastereocontrol, and can be used to isolate single stereoisomers of stereochemically complex cyclobutanes in good yield.

9.
Contemp Clin Dent ; 9(1): 55-59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599585

RESUMO

BACKGROUND: The shrinkage of the alveolar ridge might be minimized by the ridge preservation stages and applied alloplasts, after tooth extraction. According to studies on statins, angiogenesis and osteogenesis are observed as a topical application of these drugs. OBJECTIVES: The aim of this study is to the application of simvastatin in terms of bone regeneration of the alveolar ridge after tooth extraction. MATERIALS AND METHODS: This study assessed this issue through the split-mouth method which assessed 10 dental sockets filled with simvastatin and collagen and 10 others filled just by collagen postextraction. The histological process of bone samples was observed under light microscope after 2 months at the time of fixture insertion to evaluate live and dead bone, trabecular, amorphous, and nonosteoblastic. The statistical analysis was assessed using Mann-Whitney U-test and level of significance was considered <0.05. RESULTS: Normal bone was detected in both groups. In simvastatin group, the percentages of vital bone, amorphous, and trabecular bone were more than the other group and the percentages of dead bone and nonosteoblastic were lower, although there was no significant difference in the results. CONCLUSION: Based on study results, simvastatin possibly can improve the quality of osteogenesis in the jaw bone; however, further studies are necessary to definitively result.

10.
Inorg Chem ; 55(22): 11685-11693, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27809486

RESUMO

Six new Cu(I) complexes with pincer N-heterocyclic carbene (NHC) ligands of the type 2,6-bis(3-alkylimidazol-2-ylidene)pyridine, I(R)CNC, and 2,6-bis(3-alkylimidazol-2-ylidene)methylpyridine, I(R)C^N^C, where R = Me, Et, and iPr have been synthesized using Cu precursors and bis(imidazolium) salts. All of these compounds, namely, [Cu2(IMeCNC)2](PF6)2, 1; [Cu2(IEtCNC)2](PF6)2, 2; [Cu2(IiPrCNC)2](PF6)2, 3; [Cu(IMeC^N^C)](PF6), 4; [Cu(IEtC^N^C)](PF6), 5; and [Cu(IiPrC^N^C)](PF6), 6, have been characterized by 1H and 13C NMR spectroscopies, elemental analysis, solution conductivity, and electrochemical studies. Single crystal X-ray structures were obtained for all complexes except 1. The crystallographic data reveal a binuclear structure containing two Cu atoms at a close distance, 2.622-2.811 Å for all the complexes except 5, which shows a unique mononuclear structure. Spatial syn arrangement of ethyl groups and extensive π-π stacking in the solid state accounts for the mononuclear structure of complex 5. A pseudolinear coordination geometry about metal centers consisting of two Cu-carbene bonds, as well as weak Cu-pyridine interactions, exist among all the complexes independent of their ligand. Solution-state conductivity data reveal a dominant 1:2 electrolyte behavior for 1-3 but 1:1 electrolyte for 4-6, consistent with the sustainable binuclear structure in solutions of Cu(I)-I(R)CNC complexes. Cyclic voltammetry and differential pulse voltammetry studies reveal an irreversible and two quasi-reversible peaks for the one-electron oxidation of solvent-bound and solvent-free binuclear and mononuclear Cu-NHC species in complexes 1-3. In contrast, the reversible Cu(II)/Cu(I) couples of 4-6 at potentials close to that of complexes with tripodal polydentate NHC scaffolds indicate the electronic and structural flexibility of I(R)C^N^C ligands to accommodate both Cu(I) and Cu(II) ions.

11.
Chemistry ; 20(2): 435-46, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24339041

RESUMO

AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.


Assuntos
Enzimas Reparadoras do DNA/química , Oxigênio/química , Adenina/análogos & derivados , Adenina/química , Sítios de Ligação , Catálise , Complexos de Coordenação/química , Metilação de DNA , Hidroxilação , Ferro/química , Isomerismo , Simulação de Dinâmica Molecular , Ligação Proteica , Teoria Quântica
12.
Mol Pharm ; 11(2): 617-29, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24294970

RESUMO

In developing targeted probes for positron emission tomography (PET) based on (64)Cu, stable complexation of the radiometal is key, and a flexible handle for bioconjugation is highly advantageous. Here, we present the synthesis and characterization of the chelator pycup and four derivatives. Pycup is a cross-bridged cyclam derivative with a pyridyl donor atom integrated into the cross-bridge resulting in a pentadentate ligand. The pycup platform provides kinetic inertness toward (64)Cu dechelation and offers versatile bioconjugation chemistry. We varied the number and type of additional donor atoms by alkylation of the remaining two secondary amines, providing three model ligands, pycup2A, pycup1A1Bn, and pycup2Bn, in 3-4 synthetic steps from cyclam. All model copper complexes displayed very slow decomplexation in 5 M HCl and 90 °C (t1/2: 1.5 h for pycup1A1Bn, 2.7 h for pycup2A, 20.3 h for pycup2Bn). The single crystal crystal X-ray structure of the [Cu(pycup2Bn)](2+) complex showed that the copper was coordinated in a trigonal, bipyramidal manner. The corresponding radiochemical complexes were at least 94% stable in rat plasma after 24 h. Biodistribution studies conducted in Balb/c mice at 2 h postinjection of (64)Cu labeled pycup2A revealed low residual activity in kidney, liver, and blood pool with predominantly renal clearance observed. Pycup2A was readily conjugated to a fibrin-targeted peptide and labeled with (64)Cu for successful PET imaging of arterial thrombosis in a rat model, demonstrating the utility of our new chelator in vivo.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Complexos de Coordenação/química , Radioisótopos de Cobre/química , Compostos Heterocíclicos com 1 Anel/química , Modelos Moleculares , Teoria Quântica , Animais , Quelantes/química , Cristalografia por Raios X , Estabilidade de Medicamentos , Ligantes , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar
13.
Inorg Chem ; 52(18): 10467-80, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992096

RESUMO

The known iron(II) complex [Fe(II)(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [Fe(II)(LN3S)(py)](OTf) (2) and [Fe(II)(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, ultraviolet-visible (UV-vis) spectroscopic analysis, (1)H nuclear magnetic resonance (NMR), and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [Ni(II)(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1-3 and 5 undergo a single reduction process with E(1/2) between -0.9 V to -1.2 V versus Fc(+)/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the monoreduced complex [Fe(LN3S)(DMAP)](0) (4), which was characterized by X-ray crystallography, UV-vis spectroscopic analysis, electron paramagnetic resonance (EPR) spectroscopy (g = [2.155, 2.057, 2.038]), and Mössbauer (δ = 0.33 mm s(-1); ΔE(Q) = 2.04 mm s(-1)) spectroscopy. Computational methods (DFT) were employed to model complexes 3-5. The combined experimental and computational studies show that 1-3 are 5-coordinate, high-spin (S = 2) Fe(II) complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) Fe(II) complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (S(total) = 1/2) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the monoreduced 4 appears to react with O2 to give a mixture of sulfur oxygenates and iron oxygenates. The nickel(II) complex 5 does not react with O2, and even when the monoreduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2.


Assuntos
Compostos Ferrosos/química , Iminas/química , Níquel/química , Compostos Organometálicos/química , Piridinas/química , Compostos de Sulfidrila/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Oxigênio/química , Teoria Quântica , Espectrofotometria Ultravioleta
14.
Inorg Chem ; 52(14): 7968-79, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23822112

RESUMO

A versatile class of heme monoxygenases involved in many vital functions for human health are the cytochromes P450, which react via a high-valent iron(IV) oxo heme cation radical species called Compound I. One of the key reactions catalyzed by these enzymes is C═C epoxidation of substrates. We report here a systematic study into the intrinsic chemical properties of substrate and oxidant that affect reactivity patterns. To this end, we investigated the effect of styrene and para-substituted styrene epoxidation by Compound I models with either an anionic (chloride) or neutral (acetonitrile) axial ligand. We show, for the first time, that the activation enthalpy of the reaction is determined by the ionization potential of the substrate, the electron affinity of the oxidant, and the strength of the newly formed C-O bond (approximated by the bond dissociation energy, BDE(OH)). We have set up a new valence bond model that enables us to generalize substrate epoxidation reactions by iron(IV)-oxo porphyrin cation-radical oxidants and make predictions of rate constants and reactivities. We show here that electron-withdrawing substituents lead to early transition states, whereas electron-donating groups on the olefin substrate give late transition states. This affects the barrier heights in such a way that electron-withdrawing substituents correlate the barrier height with BDE(OH), while the electron affinity of the oxidant is proportional to the barrier height for substrates with electron-donating substituents.


Assuntos
Compostos de Epóxi/química , Ferro/química , Porfirinas/química , Estireno/química , Cátions/química , Sistema Enzimático do Citocromo P-450/química , Humanos , Ligantes , Modelos Moleculares , Oxidantes/química
15.
Chemistry ; 19(12): 4058-68, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23362213

RESUMO

Iron(IV)-oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (Fe(IV) -oxo bound to porphyrin radical), the oxo group is involved in several hydrogen-bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high-valent metal-oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen-bond donors directed toward a metal(IV)-oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the OH bond (BDEOH ) in the resulting metal(III)-hydroxo complex. Furthermore, the distal hydrogen-bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton-relay mechanisms involved in the formation of the metal-oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)-oxo moiety.


Assuntos
Complexos de Coordenação/química , Ferro/química , Manganês/química , Oxidantes/química , Catálise , Sistema Enzimático do Citocromo P-450/química , Heme/química , Ligação de Hidrogênio , Oxirredução
16.
J Am Chem Soc ; 134(25): 10397-400, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22667991

RESUMO

Addition of the Lewis acid Zn(2+) to (TBP(8)Cz)Mn(V)(O) induces valence tautomerization, resulting in the formation of [(TBP(8)Cz(+•))Mn(IV)(O)-Zn(2+)]. This new species was characterized by UV-vis, EPR, the Evans method, and (1)H NMR and supported by DFT calculations. Removal of Zn(2+) quantitatively restores the starting material. Electron-transfer and hydrogen-atom-transfer reactions are strongly influenced by the presence of Zn(2+).


Assuntos
Ácidos de Lewis/química , Manganês/química , Metaloporfirinas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica , Estereoisomerismo , Zinco/química
17.
Chem Commun (Camb) ; 48(29): 3491-3, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22377754

RESUMO

Density functional theory calculations compare the reactivity of iron(IV)-oxo porphyrin and corrole cation radical species in H-atom abstraction reactions.


Assuntos
Ferro/química , Metaloporfirinas/química , Porfirinas/química , Cátions/química , Hidrogênio/química , Oxidantes/química
18.
Phys Chem Chem Phys ; 14(7): 2518-24, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22252092

RESUMO

Many enzymes in nature utilize molecular oxygen on an iron center for the catalysis of substrate hydroxylation. In recent years, great progress has been made in understanding the function and properties of iron(IV)-oxo complexes; however, little is known about the reactivity of iron(II)-superoxo intermediates in substrate activation. It has been proposed recently that iron(II)-superoxo intermediates take part as hydrogen abstraction species in the catalytic cycles of nonheme iron enzymes. To gain insight into oxygen atom transfer reactions by the nonheme iron(II)-superoxo species, we performed a density functional theory study on the aliphatic and aromatic hydroxylation reactions using a biomimetic model complex. The calculations show that nonheme iron(II)-superoxo complexes can be considered as effective oxidants in hydrogen atom abstraction reactions, for which we find a low barrier of 14.7 kcal mol(-1) on the sextet spin state surface. On the other hand, electrophilic reactions, such as aromatic hydroxylation, encounter much higher (>20 kcal mol(-1)) barrier heights and therefore are unlikely to proceed. A thermodynamic analysis puts our barrier heights into a larger context of previous studies using nonheme iron(IV)-oxo oxidants and predicts the activity of enzymatic iron(II)-superoxo intermediates.


Assuntos
Complexos de Coordenação/química , Ferro/química , Materiais Biomiméticos/química , Catálise , Enzimas/metabolismo , Hidroxilação , Oxirredução , Oxigênio/química , Estereoisomerismo , Termodinâmica
19.
Chem Commun (Camb) ; 47(38): 10674-6, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21892444

RESUMO

Density functional theory calculations on the reactivity of a Ni(II)-superoxo complex in C-H bond activation, aromatic hydroxylation and heteroatom oxidation reactions have been explored; the Ni(II)-superoxo complex is able to react with substrates with weak C-H bonds and PPh(3).


Assuntos
Complexos de Coordenação/química , Níquel/química , Oxigênio/química , Carbono/química , Cicloexenos/química , Hidrogênio/química , Hidroxilação , Oxirredução , Termodinâmica , Xantenos/química
20.
Chem Asian J ; 6(2): 493-504, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21254427

RESUMO

Iron(IV)-oxo heme cation radicals are active species in enzymes and biomimetic model complexes. They are potent oxidants in oxygen atom transfer reactions, but the reactivity is strongly dependent on the ligand system of the iron(IV)-oxo group and in particular the nature of the ligand trans to the oxo group (the axial ligand). To find out what effect the axial ligand has on the reactivity of non-heme iron(IV)-oxo species, we have performed a series of density functional theory (DFT) calculations on aliphatic and aromatic hydroxylation reactions by using [Fe(IV)=O(TMC)(L)](n+) (TMC=1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, and L=acetonitrile or chloride). The studies show that the regioselectivity of aliphatic over aromatic hydroxylation is preferred. The studies are in good agreement with experimental product distributions. Moreover, the system with the acetonitrile axial ligand is orders of magnitude more reactive than that with a chloride axial ligand. We have analyzed our results and we have shown that the metal-ligand interactions influence the orbital energies and as a consequence also the electron affinities and hydrogen atom abstraction abilities. Thermodynamic cycles explain the regioselectivity preferences.


Assuntos
Materiais Biomiméticos/química , Heme/química , Ferro/química , Derivados de Benzeno/química , Hidroxilação , Ligantes , Modelos Moleculares , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...